Visible light crosslinkable human hair keratin hydrogels
نویسندگان
چکیده
Keratins extracted from human hair have emerged as a promising biomaterial for various biomedical applications, partly due to their wide availability, low cost, minimal immune response, and the potential to engineer autologous tissue constructs. However, the fabrication of keratin-based scaffolds typically relies on limited crosslinking mechanisms, such as via physical interactions or disulfide bond formation, which are time-consuming and result in relatively poor mechanical strength and stability. Here, we report the preparation of photocrosslinkable keratin-polyethylene glycol (PEG) hydrogels via the thiol-norbornene "click" reaction, which can be formed within one minute upon irradiation of visible light. The resulting keratin-PEG hydrogels showed highly tunable mechanical properties of up to 45 kPa in compressive modulus, and long-term stability in buffer solutions and cell culture media. These keratin-based hydrogels were tested as cell culture substrates in both two-dimensional surface seeding and three-dimensional cell encapsulation, demonstrating excellent cytocompatibility to support the attachment, spreading, and proliferation of fibroblast cells. Moreover, the photocrosslinking mechanism makes keratin-based hydrogel suitable for various microfabrication techniques, such as micropatterning and wet spinning, to fabricate cell-laden tissue constructs with different architectures. We believe that the unique features of this photocrosslinkable human hair keratin hydrogel promise new opportunities for their future biomedical applications.
منابع مشابه
BioTM Buzz (Volume 3, Issue 1)
Protein-based biomaterials are widely utilized as scaffolds for tissue engineering applications given their advantages related to biocompatibility and controllable degradation via enzymes. However, issues related to synthesis and manufacturing have limited their clinical use. In this issue of Bioengineering & Translational Medicine, engineers from Harvard and Northeastern Universities detail a ...
متن کاملVisible light crosslinkable chitosan hydrogels for tissue engineering.
In situ gelling constructs, which form a hydrogel at the site of injection, offer the advantage of delivering cells and growth factors to the complex structure of the defect area for tissue engineering. In the present study, visible light crosslinkable hydrogel systems were presented using methacrylated glycol chitosan (MeGC) and three blue light initiators: camphorquinone (CQ), fluorescein (FR...
متن کاملIn vitro evaluation of photo-crosslinkable chitosan-lactide hydrogels for bone tissue engineering.
Here we report the development and characterization of novel photo-crosslinkable chitosan-lactide (Ch-LA) hydrogels for bone tissue engineering. We synthesized the hydrogels based on Ch, LA, and methacrylic anhydride (MA), and examined their chemical structures, degradation rates, compressive moduli, and protein release kinetics. We also evaluated the cytotoxicity of the hydrogels and delivery ...
متن کاملClick-crosslinkable and photodegradable gelatin hydrogels for cytocompatible optical cell manipulation in natural environment
This paper describes the generation of "click-crosslinkable" and "photodegaradable" gelatin hydrogels from the reaction between dibenzocycloctyl-terminated photoclevable tetra-arm polyethylene glycol and azide-modified gelatin. The hydrogels were formed in 30 min through the click-crosslinking reaction. The micropatterned features in the hydrogels were created by micropatterned light irradiatio...
متن کاملPhoto-crosslinkable and biodegradable Pluronic/heparin hydrogels for local and sustained delivery of angiogenic growth factor.
Photo-crosslinkable and biodegradable Pluronic/heparin composite hydrogels were fabricated for local and sustained delivery of basic fibroblast growth factor (bFGF) to induce angiogenesis. Terminally di-acrylated Pluronic F127 and vinyl group conjugated heparin were used as a mixed macromer precursor solution to prepare a photo-crosslinkable hydrogel. An aqueous solution containing the two macr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2018